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ABSTRACT

Two aspects of digital communication were investigated. In the first part, a

FFT-based, M-ary FSK receiver in a Rician-fading channel was analyzed to determine

the benefits of non-uniform windowing of sampled received data. When a frequency

offset occurs, non-uniform windowing provided better FFT magnitude separation.

The improved dynamic range was balanced against a loss in detectability due to

signal attenuation. With large frequency offset, the improved magnitude separation

outweighed the loss in detectability. An analysis was carried out to determine what

frequency deviation is necessary for non-uniform windowing to out-perform uniform

windowing in a slow Rician-fading channel. Having established typical values of prob-

ability of bit errors, the second part of this thesis looked at improving throughput

in a digital communications network by applying adaptive automatic repeat request

(ARQ) protocols. The results of simulations of adaptive ARQ protocols with vari-

able frame lengths is presented. By varying the frame length, improved throughput

performance through all bit error rates was achieved.
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I. INTRODUCTION

Two aspects of digital communication were investigated. Chapters II, III and IV

present an analysis determining the advantages of non-uniform windowing in reducing

the effects of frequency offsets caused by doppler shifts and other sources in a fading

channel. Chapters V, VI and VII develop a simulation of adaptive automatic repeat

request (ARQ) protocols to improve throughput performance through various bit

error rates.

A. EFFECTS OF NON-UNIFORM WINDOWING

Digital communication involves the transmission of information in bit format.

M-ary frequency-shift-keying (MFSK) uses M = 2k different frequencies to represent,

Al different symbols (each containing k bits of information). A proper determination

of the frequency sent enables the receiver to determine which symbol was transmitted.

With the advent of real-time Fast Fourier Transform (FFT) processors. an

MFSK receiver can be easily implemented. Selected output bins of the FFT will

correspond to the Al possible frequencies provided the sampling rate and the signal

frequencies are closely related. In the case developed here, a bin separation of two

will be used (proper determination of sampling rate and corresponding bill locations

will be discussed in Chapter II). By comparing the magnitudes of the FFT output

bins and choosing the bin with the largest magnitude, the transmitted symbol can be

identified.

Noise in the channel causes a variance in the magnitudes of the FFT outpult

and an error can occur when the magnitude of one output bin is greater than the bin

corresponding to the frequency of the signal sent. In the presence of frequency offsets



(caused by doppler shifts or receiver oscillator drift, for example), the probability

of error is further increased by a shifting of signal power into other frequency bins.

Frequency offsets also contribute indirectly to erroneous frequency components by

causing leakage. Leakage is encountered in FFT analysis and is a result of a periodic

signal not being sampled over an integer number of cycles. A discontinuity will occur

at the endpoints of the signal and will contribute erroneous frequency components to

the FFT. These contributions can be seen in Figure 1.1(a) where the magnitudes of

a FFT are given for a noiseless signal experiencing a frequency offset.
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Figure 1.1: Effects of frequency offset with (a) rectangular, and (b) [lamming
windowing. Dynamic range is improved using non-uniform windowing with a loss of
signal detectability.

Non-uniform windowing can be used on the sampled signal in order to smooth

out discontinuities at the endpoints of the sampling interval and help reduce the effects

of leakage. The reduced effects of leakage are balanced against signal attenuation

caused by non-uniform windowing. With less energy, signal detectability deteriorates

and the noise variance has a greater effect on proper signal decoding. This is seen in

92



Figure 1.1(b) where a Hamming window is applied to the sampled signal. Although

the dynamic range between the two components of interest has increased, signal

strength has decreased. As the frequency offset becomes more dramatic, the benefits

of reducing the amount of leakage by non-uniform windowing outweighs the loss in

signal detectability.

This thesis investigates the amount of frequency offset necessary to overcome

the performance loss due to signal attentuation in a Rician-fading channel. The

results of [1] are applied to a channel experiencing slow Rician fading to determine

the effects of fading on the performance trade-off between non-uniform and uniform

windowing. A statistical analysis is carried out to determine the probability of bit

error as a function of signal-to-noise ratios as well as direct-to-fading ratios associated

with Rician fading. From these results, the frequency offset at which non-uniform

windowing out-performs uniform windowing is determined. It is shown that as the

channel approaches Rayleigh fading (the direct-to-fading ratio decreases), the amount

of frequency offset necessary to justify the use of non-uniform windowing decreases

despite its signal attenuation characteristic.

B. ADAPTIVE ARQ

Having an understanding of the expected bit error rate experienced by the

channel, Chapters V through VII investigate the possibility of improving throughput

performance by implementing an adaptive automatic repeat request (ARQ) scheme

in computer communication.

Communication between computers can be described using the seven layer open

systems interconnection (OSI) model given in Figure 1.2. Information from each node

is first processed down to the network layer and into the data link control (DLC).

The DLC then prepares the packet of information for transmission. Overhead bits

3



are appended to the packet which include coding information for error detection and

synchronization. In addition, a header and a tail is attached to the packet so that it

may be identified by the proper receiving node. The processed packet, now a frame.

is released from the DLC to the physical interface for transmission over the physical

link. The transmitted frame is then received at the receiving node's physical interface

and a reverse process occurs.

Application Application
I I

Presentation Presentation
I I

Session Session

Transport Transport

Network Network

I
SPhysical Interface )QPyia nefc

I Physical Link

Figure 1.2: In an OSI network communication representation, data packets are
passed from the network layer to the data link control (DLC) layer where they are
formatted and processed for transmission over the physical link. ARQ protocols are
carried out in the DLC layer.

As noted in the previous section, noise on the physical link sometimes corrupts

the transmitted frame and an error-detection scheme is implemented by the DLC to

recognize transmission errors. When an error occurs, the receiving DLC must issue a

command to the sender of the frame to request retransmission of the frame.
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Several different ARQ protocols currently exist and three will be analyzed here-

stop-and-wait, go-back-N and selective-repeat. An analysis of the throughput cf each

will be developed to compare the performance of each protocol. From this analysis,

it is found that different fixed frame lengths provide better performance for various

bit error rates. Although one frame length may be efficient at a given bit error rate,

that same length may not be as efficient if the bit error rate changes. This is reflected

in Figure 1.3 where, although a frame length of 1024 bits is most efficient at low

bit error rates, at high bit error rates a substantial improvement in throughput is

achieved using a frame length of 128 bits.

Adaptive
0.8 - - "

0.7 ------

s 0.6 L=128 L=256 L=512 '"

0.5' "

- 0.4'

0.3 L=1024 .

0.2 F

0.1

]
9

y i .5  
]014 ]0J30

Probability of Bit Error

Figure 1.3: Dotted curves represent throughput of a fixed frame length ARQ proto-
col for various frame lengths L. At low bit error rates, increased percentage overhead
in small frames decreases throughput. At higher bit error rates. longer frames have a
higher probability of error. The solid curve represents the desired performance from
an adaptive ARQ scheme.

To help improve performance through the entire range of bit error rates, an

adaptive ARQ protocol can be implemented. With adaptive frame lengits. long



frames are used at lower bit error rates and shorter frames at higher bit error rates.

By adapting to the appropriate frame length, the throughput achieved can approach

the maximum at any BER of the channel (the solid curve in Figure 1.3). The concept

of an adaptive ARQ strategy is proposed in [2]. This thesis presents the results from

simulations where the length of a frame can adapt to the experienced bit error rate

of the channel.

6



II. RECEIVER ANALYSIS

An analysis similar to that presented in [1] is carried out where, in an M-ary FSK

communications scheme, one of M signals is sent during the time interval 0 < t < T.

Customarily, M = 2k so that k-bits of digital information are represented by each

signal. The possible signals to be transmitted are of the form

S,(t) = 2E cos27rfmt (2.1)

where E, is the signal energy (E, = foTs' (t)dt) and fm is one of the .4! frequencies

used to distinguish among signals where

1 A 1r(m -1)
fm = + T (2.2)

Here. Af is an integer representing the spacing (relative to 1IT) between each of the

Al signals. This signal is modulated with an appropriate carrier frequency f, which

is removed at the receiver.

The receiver used in this analysis is depicted in Figure 2.1. After removing the

carrier frequency and low-pass filtering (with cutoff frequency W14 > fmr). the signal

is then sampled at a rate NIT (N is the size of the FFT) so that the outputs of the

FFT correspond to a frequency spacing of 11T. With this sampling rate, only the

bins with a spacing Af from Equation 2.2 will be used in the decision stage.

The input to the receiver is the transmitted signal corrupted by zero-mean,

Gaussian-distributed white noise rq(t) with power spectral density (p.s.d.) of N/2.

The signal may also experience a frequency offset of f' caused by doppler effects,

receiver oscillator drift or other sources. In addition, the signal experiences slow

Rician fading causing the amplitude a to be a random variable following a Rician



cosset w(n)

Maximum

Figure 2.1: With a FFT receiver, the incoming signal is sampled, a window is
applied, and the magnitude of the FFT output is used to determine which signal is
received.

distribution. Rician-distributed random variables in signal analysis are characterized

by the ratio of the power of the direct signal component A2 to the power of the

diffused (or faded) component 2a2

a [a 2 + 1 (A]
f.(a) = -- exp (2.3)

or1 2 2 2 /

where Io(x) is the modified Bessel function

lo(X) 0 ) 9n)2 (2.4)

At the receiver's input,

r(t) = 2E acos [2r,(f, + fm + f')t] + TI(t) (2.5)

and after removing the carrier

(t) = 2VE-a cos [2r(f , + f')t] + 71(t). (2.6)

To simplify the signal representation, the following substitutions are made:

q I + Af (77- 1) (27)

= f'T (2.8)

II I I I8



so that Equation 2.6 becomes

(t) = +Eacos [2r(q + c)] ] ) (2.9)

where f now denotes the fractional (of l/T) frequency offset and q represents the

multiple of 11T of the sent signal. With a sampling rate of NIT, the discrete form

of Equation 2.9 is represented by

27r(q + c)n
r(n) = 12E. a cos N +7(n). (2.10)

As seen in the receiver of Figure 2.1, the discrete signal is windowed using a

discrete windowing function w(n) and the FFT is taken. The outputs of the FFT

can be expressed in real (denoted XR(k)) and imaginary XI(k) parts

N-1 27IkTi

XR(k) = Z r(n)u.(n) cos --N

-Z w(n) 2E a Cos N O cos -N +i(n)u'(n) cos A (2.11)
n=O

N-1 2irkn
X 1 (k) = y r(n)w(n)sin N

n- - 7=0 c n . 2 rk -. 6= E Jw(n) acos E sin n w) sin (2.12)

Eco N -+- +--(n)w() N Y

Keeping in mind that the channel experiences slow Rician fading so that a is

assumed to be a constant over the period of interest 0 < t < T. and, because the

received signal is being corrupted by random noise following a Gaussian distribution.

XR(k) and XI(k) are Gaussian distributed as well, since they are derived from linear

combinations of Gaussian processes. As a result, the output of the FFT generator is

a complex Gaussian process of the form

X(k) = XR(k) + jXj(k). (2.13)

9



The necessary variable for the decision criteria will be the magnitude of the

outputs of the FFT

dk = IX(k)l- /X 2 (k) +±X (k). (2.14)

This is the envelope of the the complex signal X(k). As stated in [31, for a random

complex signal X(k), the distribution of the envelope is

f(dk) = dk [-1 (d 2 + 112)] jo (dfl (2.15)ax 2 2o7Xk 0J 2.

where (overbar notation denotes expected value),

p = IX(k)I = Xk)+ ( (2.16)

and

ork = 1 E [IX(k) - X(k)12]. (2.17)

The mean of X(k) (from Equations 2.11 and 2.12) for a fixed amplitude a are

easily found by observing that q(n) is the only random quantity and is zero-mean.

causing the second term of the sum to go to zero leaving the first term of the sum,

N-1 27rn(q + c) 27-nk
R = E, F2 w(n) cos cos N

n=o N N
A= mn(2.18)

N-1 27rn(q+c) . 2rnk

2s Zjw(n)sin A' nsi
n=0

ni= 1 . (2.19)

The variance in Equation 2.17 then becomes

2 E 27rnk -I 2 nk 2]wIX=2 E  
=  (n)7(n) cos N + E w(n)7/(n) sin N (2.20)

which, because of white noise, the autocorrelation function of 77(n) is given by

R,(n,p) = 2WN6(n - p) (2.21)
2

10



where, again, W is the cut-off frequency of the low-pass filter at the receiver and N,/2

is the p.s.d. of the additive white Gaussian noise. Equation 2.20 is reduced to

2 WNo, N-I 2 2 2r nk N-I 22 rnk'\
=r 2 Lw 2(nco N + w(n)sin I

WN, N-i () (2.22)2 E
n==O

Keep in mind that Equations 2.18 and 2.19 are still functions for a given k, m

and f. By factoring out a from mR and ml given in Equations 2.18 and 2.19, and

substituting into Equation 2.16,

P2 M272 2

a(m/ + m/)

- a2Ok. (2.23)

With slow Rician fading. Equation 2.15 is actually a conditional density on a and

becomes
dk r 1 2 fll adkx/"

fdkla(dka) = -Lexp - (d2 +2 ( . (2.24)a2 i 2a 2 k 01 .2

The density function of dk can then be found by integrating over the Rician-

distributed random variable a

fd,(dk) fdf(dkIa)f,(a)da

dk 1 (d+ 3A) .2\2

12 2 exp - +OFor 2 a 2 a 2o2

( a2 + ) (adkv - (aA(JO 0o 2 -x  I or 2 do. (2.25)

axf

By making the substitutions Io(x) = Jo(jx),

2 2 2 2 a+ (2.26)

11



and using the integral (from [4])

xe-Q2t2 J,(ax)J,(bx)dx = -exp a 2 +b] b (_ab (2.27)
OF x Q [ 4Q~ 2Q 2 /

gives

=(dk 1U +\ [ d ± 2(4]

[ 4, A± - a ] 7-20 a 2 a 2

x exp a----- + 2  j ] 2 QA I k) (2.28)

From Equation 2.4, it is seen that Io(x) is an even function. Replacing the Q2 as

defined in Equation 2.26 into Equation 2.28 results in

fd,(dk) ( dk kor f - 14 a 2+ dk'xa( + Af+ 1
Oko, 2_T [ 2a~o ±2 2 2l

x 1o (kAM ) (2.29)

which simplifies to

fd,(dk) / dk exp K!I (dk + SkA 2 )] 10 dkA V (2.30)
+ + ) 2 0 + ,J,

Note that by making the substitutions

2 2 2

ak AV, (2.31)

Equation 2.30 is seen to be Rician-distributed since

dk ( 1 + a (dkakfk(dk) = -exp 2 k ) I0 , " (2.32)

A similar result was found in [1] where the parameters a2 and 0 k are now altered as

a result of Rician fading. Note that if no fading is present (20' 2= 0 and A = 1), then

Equation 2.32 is the solution found in [1].

12



III. ERROR ANALYSIS

Now having an expression for the distribution of the magnitudes of the FFT

output, an error occurs when the desired frequency component (located at bin q of

the FFT) is less than any of the other FFT bins of interest. With a sampling rate of

N/T, the bins of interest are those corresponding to a frequency integer multiple of

Af. In addition, the FFT displays symmetry about the N/2 frequency bin so only

the first N/2 outputs are of consequence. Finally, the first bin corresponding to a

d.c. component is disregarded, as well as the bin located at N/2, since a frequency

component in this bin will not satisfy the Nyquist criteria.

As further discussed in [1] (referencing [5]), the union bound solution is carried

out for the probability P, of symbol error. From Equations 2.18 and 2.19, the distri-

bution of dk will differ with a positive or negative frequency offset c. It is assumed

that a positive or negative frequency offset is equally likely. In addition. each of the

M signals are assumed equally likely to occur with probability 1/Al. An error occurs

when the magnitude dk of a FFT bin is greater than the magnitude dq (refering to

Equation 2.7) of the bin of interest. The probability of symbol error is then given by

p< 1
- 2 .I E {Pr[d(q) < d(k)-I + (,q] + Pr[d(q) < d(k) q]21 , qE1 + ALf(- - 1)]

- =1, 2, .. i
k vfq

(3.1)

where, from [5], for Rician-distributed random variables

Pr[d(q) < d(k)] =

Q (f-e), (a +b) Io(V-) (3.2)
3c + 2

13



with the following definitions made

2
A 0 k

q +- O".

2

b A cq

012
A q

O0k

Evaluation of the Marcum-Q function is described in Appendix A. Also, the depen-

dency of E, q and k is found in the f0k term in the definitions made in Equation 2.23

(with reference to Equations 2.18 and 2.19).

Parameters for analysis include the direct-to-fading ratio

A A 2

DTF2- (3.3)

and the signal-to-noise ratio at the receiver

SN R Es _ A2 +2a 2  (3.4)
N. N(

By solving each of the above equations for A2. it is found that

2 SNR a
N, 2(DTF + 1) = (3.5)

which is the diffused signal-to-noise density ratio. Using this, making the substitutions

from Equation 2.31, and normalizing the transmitted energy (E, = 1 in Equation 2.18

and 2.19), then a, b and c can be expressed in terms of the given parameters

2DTF3k

- k + 15q + /- WV- w 2 (n) (3.6)

b = 2DTFJq
4k + 13q + 1  N-i u,2 (n) (3.7)

_
2/3qy + WV~=~ 0 N-,(f

It , , N wV (n )
= 2 3q7 + U'Z$LO 1 W2(n) (3.8)

14..,n=O

14



A bound on bit error is then found by

P M12 p/ . (3.9)
P - 1

15



IV. WINDOWING RESULTS

Graphs of the probability of bit error as a function of the received signal-to-

noise ratio (per bit) were constructed for various direct-to-fading ratios .4/20" for

the rectangular and Hamming windowing cases. These results were generated from

Equations 3.1 and 3.2 with evaluation of the Marcum-Q function and the modified

Bessel function described in Appendix A. A plot with low fading channel (A 2/ 2 72 =

100) is given in Figure 4.1 below. The case studied in (1] (_f = 2. . = 8) is used so

that a direct comparison of results can be made. In the case of low fading. the results

are comparable.

-- ... . J - ---_-- - ~ . _ _ _ - -

1 . =0.3 f =(2

10/
=0.4 =0.3

=0.5=0 i

, I(, (I \ " ,(e (.

102 C=0.4

i[. Drect-to-Fadm;g Ril( _______ 10* ' D _____oFuin R Io .0.\__
0 5 10 15 05 10

SNR (per hit) SNR (per bit)

(a) Rectangular (a) Hamming

Figure 4.1: Probability of bit error for low fading channel (a) rectangular. and (b)
Hamming windowing. 32-point FFT, M = 8, A1 = 2.
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From Figure 4.1 the advantages of the non-uniform windowing can be seen as

the frequency offset becomes larger for a fixed f, and T. In both cases, as ( grows

linearly, the energy necessary to maintain a given bit error rate grows exponentially.

However. the advantage of the Hamming window is reflected in a smaller exponential

increase than the rectangular window. With lower values of frequency offset the

signal energy necessary is larger than with uniform windowing, but, as ( increases,

the advantages of non-uniform windowing become apparent.

A visual represenation of this was developed in [1] by graphing the amount of

SNR degradation necessary to maintain a fixed probability of bit error as a function

of increasing f and is repeated here. Figure 4.2 gives the result for the low fading

case with a fixed BER of 102 (from Figure 4.1).

5 I

4.5 /

4/

C/3.5 ,/ .

- 3 Hamming

1.5 ..-

Rectangular

0.5>
Directto-Fadin, Ratio 100.0

0 0.1 0.2 0.3 0.4 0.5

Fractional Frequency Offset ()

Figure 4.2: Trade-off of uniform and non-uniform windowing for bit error rate of
102. Non-uniform windowing becomes more advantageous as c increases.
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Similar graphs of bit error rate as a function of SNR are given for the case

of a slightly diffused channel (A2/20, 2 = 3.16) in Figure 4.3. The results display-

ing SNR degradation are given as well. From Figure 4.3 we see that with a more

diffused signal, the cross-over fractional frequency offset decreases. This phenomena

was studied closer by generating additional results in the same manner for various

direct-to-diffused ratios and plotting the frequency offset cross-over point of each in

Figure 4.4. From this graph we see that the jusfication to use non-uniform window-

ing is very sensitive in the area of equal direct and diffused components. However,

as the direct component approaches zero (Rayleigh fading), non-uniform windowing

becomes more advantageous when minimal frequency offset is expected.
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V. ARQ PROTOCOLS AND THEIR
PERFORMANCE

As seen in the previous section, noise on a communication channel can cause

errors in the reception of signals. When an error occurs in computer communications.,

the receiving DLC must issue a command to the sender for retransmission of the frame.

This negative acknowledgement (NAK) of the received frame, or acknowledgement

(ACK) if no errors occured, can be a relatively short frame with a minimal chance

of error or imbedded in a longer information frame with a higher probability of error

occuring in the frame. As a safeguard, the original sending node assigns a maximum

allowable waiting time, or timeout, where, upon its expiration, the frame is assumed

to have been received in error and is then retransmitted.

The efficiency of ARQ schemes is dependent upon the complexity of the DLC to

implement it; the more complex the implementation, the higher the throughput rate.

Current ARQ protocols-stop-and-wait, go-back-N and selective-repeat-are based

on a fixed frame length. As will be seen from the throughput curves generated for

each protocol, a higher performance may be achieved in areas of different bit error

rates with different frame lengths.

A. STOP-AND-WAIT ARQ

The stop-and-wait ARQ protocol is the simplest protocol to implement and

serves as a good example to illustrate ARQ schemes. In the stop-and-wait protocol,

each frame is transmitted and the sending DLC then stands idle waiting for a response.

If a negative response is made (either by a NAK or by a timeout). the frame is

retransmitted. This process continues until all frames have been transmitted. As an
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example, a communication is illustrated in Figure 5.1 between a sending DLC (node

A) and a receiving DLC (node B). Here, frame '0' is sent and received correctly by

node B who ACKs the packet by requesting the next frame (frame '1'). An error was

encounterd with frame '1' and node B NAKs (negatively acknowiedges) the frame

by re-requesting frame '1' which is retransmitted by node A. The ACK from node B

encounters an error and at the conclusion of the timeout, frame A retransmits the

frame.

tdelay

node A 0 - FlF

•AC

AK NA C ACK ACK

node B 0
-4 ck I-

Figure 5.1: Stop-and-wait protocol. Frame '0' is sent and ACKed by node B. An
error occurs with frame '1' and is NAKed by B. The ACK from node B encounters
an error, and at the conclusion of the timeout, frame A retransmits the frame.

1. Performance Analysis Background

Performance for each of the three protocols will be developed in their re-

spective sections. Before proceeding with the analysis for the stop-and-wailt protocol.

the following background used in all three performance analyses is developed.
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a. Assumptions

The following assumptions are made throughout the performance analysis:

* Node (A) continuously transmits to node (B). - With node A continuously

transmitting, there are no queuing delays. Because node B has no information

to send to node A, acknowledgement frames will only contain the ACK or NAK.

e An acknowledgement is always received and is never received in error. - This

assumption can be made because of the relatively short length of the acknowl-

edgement frame.

o The propagation delay is known. - This stipulation is only necessary to es-

tablish an appropriate window size with the go-back-N and selective repeat

protocols.

* Processing time at each node is negligible and can be considered included in

the propagation delay.

* Bit error is independently and identically distributed for all bits within a frame.

b. Average Transmission Attempts

If the probability Pb of bit error is independent and identically distributed for

each bit within a frame (L bits long), the probability of a frame being received in

error is given by

Pe 1 - Pce = 1- (1 _ pb)L .  (5.1)

The probability that it will take i attempts to successfully transmit a packet can be

expressed as

Pr[numbcr of attempts = i] = Pi-'(1 - Pr). (5.2)
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The expected number of attempts can be computed by I

E [P -'(1 - P,)] = (1 - P,)E [P'-'] (5.3)
o0

(1 - PC) iP 1  (5.4)
i= 1

1 (5.5)

c. Throughput Definition

Throughput is defined as

& total bits successfully transmitted in a given time interval
P = bit capacity of the channel in the same interval (5.6)

This can also be expressed as the ratio of the time to transmit a frame ttral, to the

average time to transmit a frame without error 7.

Because the information packet is appended with overhead bits f, some of which

contains coding information, the throughput is scaled by this 'coding' rate. This

results in a throughput efficiency given by

& ttan (L - f
P =L (5.7)

2. Stop-and-Wait Performance

The total time the transmitter expends for each frame is a sum of the trans-

mission time of the frame, transmission time of the acknowledgement tack and two

propagation delays tpop (which are a.;sumed to contain the processing delay) for the

round-trip cycle. This gives a total time for each transimission attempt of

TL = t trans + 2 t prop + t ack (5.8)

1The infinite sum is shown to be convergent by taking the derivative of the geometric infinite
series solution where x < I

a 00 XnnXn-1
=0 Y X (1 -x) 2

4n=
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Using the results of Equation 5.5 for the average number of attempts, the average

time to transmit a frame succussfully is given by

Sttrs+ 
2 tprop + tack

1-Pc

By applying the definition of throughput given in Equation 5.7 and defining the

number of frames that can be sent in one round-trip propagation delay as

ax 2tprop + tuck

ttrans

the throughput of the stop-and-wait strategy is

(1 - P) (L - t) _ (1 - Pb)L (L - )(511)
1 + a L I+a L

Theoretical curves for Equation 5.11 are given in Figure 5.2 for various frame lengths.

The simulations described in Appendix B were performed and the results are given

here as well.

Although the stop-and-wait protocol is easy to implement, the efficiencv of the

system is compromised by waiting for a response after each packet is transmitted. The

following two protocols do not stand idle waiting for a response and., subsequently,

have better expected throughput than the stop-and-wait.

B. GO-BACK-N

In the go-back-N protocol, node A continuously sends frames to node B. Node

B keeps node A aware of its status by responding with an acknowledgement which

contains an RN (received number) indicating that all frames preceding RN have been

received correctly. RN also indicates that all frames from RN onward need to be sent

by A. As frames are received without error, RN is incremented.

In the event of an error, RN will remain constant as illustrated in Figure 5.3.

There is a limit to the number of frames node A can send beyond RN so that a frame

25



0.6 .. .. rrrnr -r - r r r -- -

- . . -o ... C=32000 b/s

L 1024 prOp=20 msec
0.5, ACK=32 bits

over=32 bits
L=512

0.4 ,-0 o -,-~- .0 o-- ooo~o~o Theoretical0.o4 
o Simulation

I - 00.3,S.3L=256

,- .# 4-o---.-o-.o -o o CCO 0-o-o.0-0~ ,)0 o o o o- 0

0.2- - . o , ,
,L= 128 a ,

I O -000 ---- 0 -0-00 0 0 00 0- 0-0 0 -4-0 -a-o~
0

0c

0.1- ' o

0 0 CCo

10 I I 0 0 W

10 U 0 10' 1(lO2

Probaibility of Bit Error

Figure 5.2: Performance of stop-and-wait for frame lengths of 1024. .512. 256 and
128. Channel capacity is 32000 b/s and a round-trip propagation delay of 0.02 sec-
onds.

in error can be detected and retransmitted by node A. The number of frames that

can be transmitted beyond RN is the Nin go-back-N and is referred to as the window

length. Because RN remains constant) when an error occurs, node A will stop as soon

as the end of the window is reached (SN + 1 = RN + N) and go back N frames

and begin retransmission of frame RN and all subsequent frames. To minimize the

number of frames needed to be retransmitted in the event of an error, the value of A'

is set to the number of frames that can be transmitted in the time interval given in

Equation 5.8. Using Equation 5.10,

N = a + 1. (5.12)

With the go-back- N protocol, the transmitter can send frames continuously.

However, upon each frame received in error, the protocol requires that the sending

DLC go back N frames and resend them. Thus, when successful on the ith attempt.
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Go-back-4

SN= 10 2 2 2 2 3 4 5 6

node A

node B

Figure 5.3: Go-back-N protocol for N = 4. With frame 2 received in error. RN
stays constant at 2 until node A has reached the end of the window. Node A detects
the error and must "go back 4" frames.

the DLC has sent a total of 1 + (i - 1)N frames. The average number of attempts

was given in Equation 5.5 which results in an average number of frames (f) that need

to be sent of

I~ 1±(_1
f = 1+( 1 1)N

1 + P(N- 1) (.5.13)
l -Pe

Using Equation 5.12. the average time to transmit a frame successfully is

SttranJ7

It,.(l + aP,) (5.14)

1 - i

Applying the definition given by Equation 5.7, the theoretical throughput for the

go-back-N protocol becomes

(1 - Pe) (L -) (51)

1 + aP, L
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where the dependency of P, on L is shown in Equation 5.1. A graph of theoretical

throughputs for various frame lengths is given in Figure 5.4 with the simulation

results superimposed. It can be seen from the graph that an adaptive strategy will

not improve the performance of the go-back-N protocol. A frame length of 1024 could

be used at all bit error rates and only a fractional percent of throughput would be

lost at higher bit error rates.

0.904 o . L=1024
0o '0 .\, C=32M)X bis

.o .prop =50(i msec0.8! 0. 0- pr

I oog ACK=32 bits
0. OVer=32 bits

0.6 ... Theoretical

L=512 o Simulition
0.5 .

H. (1.4 - i n

0 .3 L L=256 -

0.3F

L I2 -. B0.2O ' ' 8\ j ,4 4 .

-. L = 12 -0

Probability of Bit Error

Figure 5.4: Performance of go-back-N for various frame lengths. A frame length
of 1024 could be used at all bit error rates with only minimal loss of performance at

higher BER.

C. SELECTIVE-REPEAT ARQ

The selective-repeat protocol is similar to the go-back-N except that when an

error occurs, only the frame that is in error needs to be retransmitted. Here it

is important to acknowledge each frame (both positive and negative) so that the

transmitter accounts for all frames sent out. If a response is not received, that frame

reaches its timeout and is rctransmitted.
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Frame & timeout

node A

ACK ACK A ACK ACK ACK ACK ACK ACK ACI

RN= 0 12 3 4 2 5 167 8

node B

Figure 5.5: Selective repeat protocol.

The obvious advantage of selective-repeat over go-back-N is that only the frame

in error is retransmitted as opposed to sending all following N - 1 frames in the

go-back-N protocol. However, this requires that the receiving DLC have adequate

memory to store frames that it receives and to be able to sort them as they become

available. If memory in the receiver is full, then all incoming frames are NAKed,

regardless of any errors.

The throughput analysis for selective-repeat (with an infinite receiver buffer

size) is straightforward from Equation 5.5. Because the only delay experienced is

that of the retransmission of a single frame when an error occurs,

t - t ,a (5.16)
1-Pe

which results in a theoretical throughput for selective-repeat with an infinite receiver

buffer as

Psr = (1 - Pb)LL - -t (5.17)

Plots of theoretical throughputs with infinite receiver buffer length are given in Fig-

ure 5.6 with the results obtained in the simulation.

29



0.9 - C=32000 b/s
'_O-o-,-- ----0--- -0--o o ,:-:,o "V. prop=700 rnisec

0.8 \ - "-,,. ACK=32 bits
.- o.....\,. ~ -o o ,, -.. over=32 bits

0.7-

0.6 1 L=512 0,. 0

L=256
0.5 \

0 L=128

1- 0.4 -

0.3 L= 1024 . 0

0.2 --- Theoretical ,
o Simulation

0.11

A5 1] 0 4  10 3  0 2

Probabilht\ of Bit Error

Figure 5.6: Performance of selective repeat with an infinite buffer.

By limiting the size of the buffer to the number of frames that can be transmitted

in a round-trip delay N, a lower bound on the throughput is given in [6] by

A0 A0
Ao + (5.18)

where

Ao=

A, = p 2  + + p,21N-2

A2  =3 ,-2 .N2 -2 2 3 N-2 - 3 2.,N-2

and

e

3= 1-P3
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Figure 5.7: Performance of SR with finite receiver buffer (fixed length L = 1024).
N = 22 is the number of frames transmitted in a round-trip delay. From the analysis
of [6], a lower bound on throughput is given.

A comparison of the upper bound (infinite receiver buffer) and the lower bound given

in Equation 5.18 is given in Figure 5.7 for a fixed length of L = 1024. For the

simulation, a receiver buffer size of 64K is used instead of restricting it to N (N = 22

for the parameters of the simulation). A buffer size of 64K was believed not to be

too excessive, yet imposes some restriction on the system.
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VI. ADAPTIVE ARQ PROTOCOLS

Implementation of the previously described ARQ schemes remains the same in

an adaptive environment. The adaptation takes the form of varying the length L

of the frames. With an increased bit error rate, the increase in frame error rate in

Equation 5.1 can be offset by decreasing the length of the frame. Alternatively, if

the bit error rate of the channel decreases, a longer frame length will decrease the

percentage of a frame dedicated to overhead (assuming the overhead remains constant

for varying lengths).

A. ADAPTIVE STOP-AND-WAIT USING A SEMAPHORE

The decision to change the length of the frame was made in three different

schemes. The first scheme is taken from [7] and invokes a counting semaphore 772

that is incremented each time a frame is acknowledged and decreased each time a

frame needs to be retransmitted. The length of the frame is then dependent upon

the current value of the semaphore by

1 -o <5 r < - i

L 1 . 1 . " (6 .1 )

n1 ITn-, :5<-- Y -[t

For this thesis, I = 128 and n 4.

Figure 6.1 shows the gain associated with an adaptive stop-and-wait protocol.

This scheme adds little complexity to the DLC implementation and provides the

desired results.
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Figure 6.1: Adaptive stop-and-wait performance. Improved performance is obtained
in the region of high BER.

B. ADAPTIVE SELECTIVE-REPEAT USING THRESHOLDS

Another criteria compared the number r of frames transmitted after a fixed

value b of frames were received in error to a threshold to determine if the frame length

should be increased (doubled) or decreased (halfed). Two schemes were implemented

where either a single threshold

L L12 (6.2)L= 2L b/r < "

or a dual threshold
L/2 PL/2>PL

L 2L P2L > PL (6.3)
L otherwise

was used. The computation of PL/2, PL and P2L are based on the experienced bit error

rate. The experienced Pb can be computed from the ratio of transmitted frames to

frames received in error by applying the inverse of Equation .5.1

r - b -P (
r-

r
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Pb= 1 - b (6.4)

Throughputs for lengths 2L and L/2 can then be computed for the selectiv- repeat

protocol with Equation 5.17. The decision criteria of Equation 6.3 then simplifies to
IL/2 1 - /(L- f) >[(r -b)/rll / 2

2L 1 - t/(2L - t) < (r - b)/r (6.5)

L otherwise

Table 6.1 can be constructed for the dual threshold selective-repeat case. The deter-

mination of -y in Equation 6.2 was taken as an average (-y = 0.88) of the thresholds

necessary to cause transition from table 6.1.

L L-- 2L L--* L/2
L = 128 0.857 N/A
L = 256 0.933 0.735
L = 512 0.968 0.871

L = 1024 N/A 0.936

TABLE 6.1: Adaptive SR transition levels. The necessary value of (r - b)/r to
cause transition either up or down with the dual threshold implementation (t = 32
bits).

The performance of the adaptive selective-repeat for a fixed buffer length is

given in Figure 6.2. Implementation of this scheme further increases the complexity

of the selective-repeat protocol. Now the transmitting node must keep track of the

length of each frame it is sending out. In addition, re-arrangement of the frames at

the receiving node becomes quite complex. For example, if a frame is NAKed and

the decision to change frame lengths is made, the packet sent in error will now be

divided between two frames each of which may or may not be received correctly in

order upon retransmission.
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Figure 6.2: Adaptive selective-repeat. Both dual and single threshold results are

given. Performance of the single threshold implementation is slightly lower in the

areas where the decision to change lengths can "toggle" between two lengths.

C. GO-BACK-N ARQ

The go-back-N protocol does not lend itself to an adaptive environment as was

seen in Figure 5.3. The difference in throughput rates between the largest frame

length used (1024) and the maximum achievable throughput is negligible. This is

because the inefficiency of go-back-N arises from the necessity to go back N frames

when an error in a frame occurs. This is depicted in Figure 6.3 where, if the first

frame is in error, the N - 1 following frames composed of L bits each result in a

possibly unnecessary retransmission of (N - l)L bits. If the frame length is halved

(and N doubled to satisfy Equation 5.12), the probability of having to re-transmit

the same number of bits is the same because the probability of transmitting two

successive frames of length L/2 correctly is equal to the probability of transmitting

a single frame of length L without error. Although some advantage may be gained
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in successfully transmitting the first frame of length L/2, there is also an increase

in percentage overhead for each frame. For example, with a BER of 10', an initial

length of L = 1024 and overhead [ = 32, if the frame length is halved, P,,, increases

by only 4.7% while the percentage of frame overhead increases 3.1%. This results in

negligible improvement in the areas of higher bit error rates.

Repeated if preceeding frame in error
t
delay

L L I L L L L LI L

(1 _ pe)L =P'ucc = (_1 _ pe)L/2(l pe)L12

222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Figure 6.3: Inefficiency of the go-back-N protocol occurs because frames following an
error must be repeated. If the frame length is halved, the probability of retransmitting
the same number of bits remains the same.
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VII. CONCLUSIONS

In an M-ary FSK scheme implemented using sampled data at the receiver and a

FFT to determine which signal was sent, it was found that non-uniform windowing can

be used to increase the performance of the system in the presence of large frequency

offsets. Implementing non-uniform windowing causes greater separation between fre-

quency components of the FFT when frequency shifts occur between transmission

and reception. Non-uniform windowing also causes attentuation of the signal making

detectability more difficult. A balance between improved frequency separation and

attenuation is achieved as the frequency offset becomes more dramatic. In the case

of a fading channel, the frequency offset necessary to justify non-uniform windowing

becomes smaller as the channel approaches Rayleigh fading.

The application of an adaptive ARQ protocol was shown to improve the through-

put of the stop-and-wait and selective-repeat ARQ protocols. With an adaptive frame

length, throughput can be increased by decreasing the probability of frame error in

high bit error rate situations through a reduction in the frame length. With low

bit error rates, a larger frame length reduces the percentage overhead in the frame

thereby increasing the throughput. The go-back-N protocol does not lend itself to

adaption. From theoretical analysis and simulation, it was found that a fixed frame

length can be used in the go-back-N protocol through all bit error rates with minimal

loss of performance.
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APPENDIX A: ERROR COMPUTATION

The probability given in Equation 3.2 was computed using the enclosed C pro-

gram code. Values for the Marcum-Q function and the Modified Bessel Function were

calculated to within a designated tolerance (10 - ) using power series expansions of

the functions from [4) and [5]

1 if 0
/2 if = 0

Q(a, 3) = !(1 + lo(a2))e - ?2  if a = 3 (A.l)
expf 2 n= 0 )l~~ if a < (3

3.-| 2+C,21 I-.-n1exp - -+aTOO 0( )n'O@) ifa>D(>

where

(1 if X = 0
In(x) = (x/2)n E= 1o otherwise (A.2)

i!(v+i)!
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1. Bit Error Program Code

* Pefad.c *
* Calculates the probability of bit error for a Rician *
* fading channel and a DFT based receiver for MFSK *

* by: Chris G. Kmiecik *
* date: 22 April, 1990 *

#include <stdio. *
#include <math.h>

#define pi 3.141592654
#define sqrt2 1.414213562
#define epsilon 0.00000001

#define N 32
#define M 8
#define 1 3

#define W 16
#define df 2
double window[l];

main()
{
double mipo, mrpo, Io), Qo, powero, rectangle), hamming(), hanningo;
double Perror, lastPerror, Enoise;
double a, b, c, numb, numc, denom;
double meanrq, meaniq, betaq;
double meanrk, meanik, betak;
long facto;
FILE *output;
int n, k, q, einc;
float SNRdb, SNR, DTF, DTFinc, ratio, e, freqe;

system("rm PefadoutHAMM.mat");

Enoise=0.0; /* */
for (n=O ; n <= N-1 ; n++) { /* Compute the values */

window[n+1=hamming(n); /* for the window at */
Enoise=Enoise+W*window[n+l)*window[n+1J/2.0; /* each 'n' and the energy */

} /* */
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for (DTFinc=2.0 ; DTFinc >= -2.0; DTFinc =DTFinc-O.25){/* Specify Direct to *

DTF=pov(lO.0,DTFinc); /* fading ratio *

for (e=0.0 ; e <= 0.5 ; ee+0.1) { *Cycle through varioiis

/* frequency shifts *

Perror=3.0; lastPerror=4.0;

SERdb=2;

while((Perror >= 0.00001) /* Continue computing Pb *
kk(SIRdb <= 99) 1* until SIR becomes large *

kk(lastPerror-Perror >= .00O0i)){ /* or error becomes small *

lastPerror=Perror; /* or error does not change *

SIRdb++;

SNR~l*pow(10.0,SNRdb/10.0); /* Convert Eb to Es *

ratioSNR/(DTF+ 1);
Perror=0.0;

for (q=1 ; q <= M*df-1 ; qq+df) {/* Each value of q donates *

meanrqmrp(q,e,q); /* to Pe. First *
meaniq=mip(q,e,q); 1* find the mean of the real*/

betaqmeanrq*meanrq+meaniq*meaniq; /* and imaginary parts then *

numc=.5*betaq*ratio+Enoise; 1* specify all parameters *
numb(SNR-ratio)*betaq; 1* changing with q only. *

f or (einc = 1; einc <= 2; einc++) { * Include both plus and *
freqee*power(-1.0,einc); /* minus Doppler shift *

for (k=1 ; k <= (N/2)-1 ; k~k+df){

if (k !=q) f

meanrkmrp~q,freqe~k); 1* Calculate values in

meanikmip(q,freqe,k); /* equations 2.17, 2.18, *
betakmeanrk*meanrk+meanik*meanik; /* 2.22, 3.1.

c=numc/(.5*betakeratio+Enoise);
denomO .5* (betaq+betak) *ratio+2 . *Enoise;
a=(SNR-ratio)*betak/denom;
b=numb/denom;

Perror=Perror+Q(sqrt(a),sqrt(b)) 1* Equation 3.2 *
-(c*exp(-0.5*(a+b))*I(0,sqrt(a*b)))/(c+1);

} * if (k q) */
} * for (k=1 ;k <= (N/2)-1 ; kk+df) *

)- * for (einc = 1; einc <= 2; einc++) *

} * for (q=1 ; q <= M*df-1 ; q=q+df) */

Perror=Perror/C2.0*M); /* Equation 3.1 *
if (Perror <= 0.2) (
outputfopen('PefadoutHAMM-mat" , a");
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fprintf~output,'%1O.8f 7.4.1! %.4.2f %5S.2!\n",Perror.SNRdb,e,DTF);
fclose(output);

}/* while (Perror >= 0.00001) *
} * for (e=0.0; e <= C.5 ee+0.1) *
} * for (DTFinc=2 ; DTFinc >= -2; DTFinc =DTFinc + 0.02) *

}/* close mai*
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* Function mip

double mrp(q,e,k)
iut k,q;
4loat e;

double axis;

ans=0 .0;
for (n=0; n <= N-1; n++){

azs=ans+cos(2*pi*n*Cq+e+k)/I)*window~n+l)+cos(2*pi.*n*(q+e-k)/N)*windown+l);

if (Ce ==0.0) kk (k !=q)) axis =0.0;

ans=ans/sqrt2;

return(ans);

* Funiction mip*

double mip(q,e~k)

int k,q;
float e;

double axis;

anus=0 .0;
for (n=0; ni <= N-1; n+.4){

axsans+sin(2*pi*n*(q+e+k)/N)*window~n+i] -sin(2*pi*n*(q+e-k)/N)*windown+l];

I

if ((e == 0.0) U (k !=q)) axis = 0.0;

axis=axis/sqrt2;

return~ans);
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* Marcum-Q Function

dobl Q*lh~ea

double Qalpha, beta;

double ans, e, inc;

jut a;

if (beta == 0.0)
as = 1.0;

else if (alpha == 0.0)

ans = exp(-0.5*beta*beta);
else if (alpha == beta)

ans = 0.S*(1.0+I(O,alpha*alpha)*exp(-1*alpha*alpha));

else if (alpha <= beta){

ans = 0.0;
e = exp(-0.S*((alpha*alpha)+(beta*beta)));
n0O; inc = 1.0;

while (inc >= epsilon){

ince*power(alpha/beta,n)*I(n,alpha*beta);
ans = ans + inc.

n++;

else{
ans =0.0;

e =exp(-0.S*((alpha*alpha)+(beta*beta)));

n=1; inc = 1.0;
while (inc >= epsilon){

ince*power(alpha/beta,n)*I(n,alpha*beta);
ans = axis + iac;

ans . 0-axis;

return(ais);
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* Modified Bessel Function*

double I(v,x)

double X;

double axis, mnc;

if (x ==0.0)
axis

else{

X=X/2.0;
anspower(x,v)/fact((long) v);

incas; n=1;
while (inc >= epsilon){

incminc*x*x/(n*(v+n));
ansans+inc;

return(ais);
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* Function rectangular *

double rectangle(n)
int n;

return(1 .0);

*Function Hamming

double hamming(n)

jnt n;

return(O.54-O.46*cos(2*pi*n/(N-1)));
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* Factorial *

long fact(x)
long x;

{
long i, ans;

ans=1;
if (x 0)

arts 1;
else
for (i = 1; i <= x; i++) arts = ans*i;

return(arns);
}

* POWER *

double power(x,n)

int n;
double x;
{
double p;
int recip;

if (n < 0) {
recip=i;
n=abs(n);
I

for (p=1.0; n > 0; --n) p=p*x;

if (recip == 1) p=.O/p;

return(p);

4
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APPENDIX B: ARQ SIMULATIONS

The ARQ simulations were carried out using a C-program. Although one node

would be transmitting to another in the application of an ARQ protocol, the simu-

lation only involves one node. A doubly-linked list maintains a record of jobs to be

performed in chronological order by the node. The node can either transmit ('SEND')

or receive an acknowledgement ('RECV') for a given frame.

For each transmission, the time of completion of transmission and the computed

time of reception (based on Equation 5.8) are added to the list of jobs. At tne

completion of transmission., the node then transmits the next frame if the protocol

allows it.

At the execution of 'RECV , a uniformily distributed, pseudorandom number

between zero and one is compared to the theoretical frame error rate (Equation 5.1).

If the comparison dictates, a NAK is recorded by the node and the appropriate

retransmission protocol is applied. Particulars for implementing retransmission in

each protocol are given below.

1. Selective-Repeat

This simulation served as the template for the others (see Section B.4) in that go-

back-N and stop-and-wait are "subsets" of this program . The adaptive nature of the

program is contained in a section added after receiving each frame's acknowledgement.

(see Figure B.1).
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2. Go-Back-N

Before sending a frame, the window is checked to see if it is full. If the window

is full SN is reset to the beginning of the window (Figure B.2).

3. Stop-and-Wait

Here, only the time to receive each packet is loaded onto the linked list. When

a frame is received, it is either ACKed or NAKed and a frame is sent out (see' ig-

ure B.3). If the frame is ACKed, the number of successful bits is incremented.

4. Selective-Repeat Program Code

*sr.c

*Simulation of selective repeat protocol with data generated*
for BER from IE-6 to 1E-2.*

*Receiver buffer size is kept track of by the sender*

by: Chris G. Kmiecik, LT, USCG*
date: 05 February, 1990

#include <stdio.h>

#include <malloc .h>

#include <math.h>

#define MALLOC(x) ((x *)malloc(sizeof(x)))
#define max..FN 4096
#define max-.buffer 65536.0

typedef struct job{
float time, length;
char type~s];
int FN;
struct job *previous, *following;
) job-.type;

float logBER;
job-.type *top-job;
FILE *of, *tf, *rf, *ttf;

main()

int framestatus Emax..YN], framelength Emax-.FN);
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jut queue;
int buffer, begin-w.indow, SI, i;
float completed, m, Ps;
float HER, simulation.length;
float capacity, propogation, overhead, ack..length;
float rand, length;
float successful-.bits, throughput, tr, tt;
job-.type *temp, *previous-job, *job, *newjobo);
unsigned long jut seed;
char *strcato);

seed=1234;
system("rm throughsr");

simulation-.length=250.0; *1
capacity = 32000; 1* Simulation Parameters *
propogation = 0.7; 1
overhead = ack-length = 32.0; 1

for (length =1024.0; length >= 128.0; lengthlength/2.0) f
for ClogBER = -6.0; logBER <= -2.0; logBERlogBER+.1) {

HER = pow(10.0,logBER); **
begin-.window = queue = SN =i =1; /* Initialize variables *
successful-bits = buffer 0.0; **
while Ci <= max-.FN) framestatus~i++]=0;
mncompleted=0;

top-.job = newjob(0.0,"send",0,0.0);

top-.job->previous = top-.job;
previous-job = top-.job;

job = newjob~simulation-.length+l,"send',0,0.0);
job->previous = previous-.job;
previous-.job->following = job;
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/********************Begin Simulating *****************

while (top-job->time <= simulation-.leflgth){

*Time to Transmit a Packet *

if (!Cstrcmp~top-job->type,"send"))){

i = begin.window;
queue = SI;
while (i != SN){

if (framestatus~i) = 3){

queue
break;
I

if (++i > max-FN) i=1;

*Re-transmit Packet in Queue*

if (queue != SN){
tt length/capacity;

job =newjob~top-job->time+tt,"seld'.,O,.O);
place-job(job);
tr =propogation+((length+ack.length)/capacity);

job newjob(top.job->time+tr, "recv'.queue ,length);

place..job(job);
framestatus~queueJ = 4;
framelength[queue] = length;

*Transmit if Window not Full*

else if (buff er+length < max-.buffer){

tt = length/capacity;

job =newjob(top-job->time+tt.seld",O,.O.);
place-job(job);
tr =propogation+( (length+ack..length)/capacity);

job = nevjob(top-job->time+tr,"recv",SN~lelgth);

place-.job(job);
bufferbuffer+length;

framestatus [SN) = 1;

framelength[SN] = length;

if (++SN > max-FN) SI 1;
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* IF Window is full*
*Try to Send Alter Receiving*

* Next Packet*

else{
job =nevjob~top-job->following->time,'send".0,O.0);
place-job~job);

1/* Packet transmission complete *

*Time to Recieve a Packet *

else if (!Cstrcmp(top.job->type,"recv'2){
seed=seed*1103515245+12345; /* Psuedo-random *
rand=Cseed/65536) % 32768; /* generator *

* NAK the received packet *

if (rand/32767 > pow((1.O-BER),top.job->length)){
framestatus (top-job->FNJ 3;

* ACK the received packet *

else{
framestatus top-job->FNJ =2;

} * Packet Received *

* Update Window Beginning *

while Cframestatus~begin..indowj = 2){

successful.bits=successful-.bits+framelength begim..indow) -overhead;
framestatus Cbegin..window) =0;
buffer=buffer-framelength Ebeginsvindow];
if (n+begin.window > mar31N) begin-.window=i;
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* Get next job*
* Free current job memory *

temptop.j ob-follouing;
free(top-job);
top-jobtemp;

}/* repeat for next job -- "vhile(top..job->time<=simulation.length)'I*

/*******************Simulation Completed ****************

* Record Throughput Results*

ttf = 2 open( "throughsr" ,"a");
throughput=successful-.bits/Ccapacity*simulation-length);

fprntf*tf"7.6.52 Xii. 82\n" .throughput .HER);
fclose(ttf);

I 1* next BER -- 'for~logEER=-4.O;logBER<--2.O;logBERlogBER+.i)" *
}/* for (length =1024.0; length >= 128.0; lengthlength/2.0) *

I/* close main *
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* Function newjob*

job-.type *newjob(time~type,FN,length)

int FN;
*float time, length;

char type ES];

job-.type *new;

it (I(new=ALLOC(job-type))){

fprintf~ttf,'out of the storage \n");
fclose(ttf);

fclose(rf);
fclose(of);
fclose(tf);
exit(l);

new->time=time;
strcpy(new->type,type);
new->FN=FN;
new->length=length;
nev->previous=new->following=NULL;

return(new);
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* Function place-.job*

place-jobCjob)
job-type *job;

job-.type *current;

currenttop-j ob;
while Cjob->time >= current->time){

current=current->following;
if ((current->following == NULL) kk (job->time >= current->time)){

current->follovingjob;
job->previouscurrent;
job->following= NULL;
return;

current->previous->following = job;
job->previous = current->previous;
current->previous=job;

job->following=cuxrent;
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*Decision Criteria for Level*
* Change*

if (M >= 1){
Ps= (completed-n)/completed;
if (Ps < 0.87) {

length=length/2.0;
if (length < 128.0) length=128.0;

else{
length = length*2.0;
if (length > 1024.0) lengthlO024.0;
I

mcompleted=0;

Figure B.1: Decision segment for single threshold.

5,5



Time to Transmit a Packet

if (!(strcmp(top.job->type,"send"))){

Transmit if Window not Full

if (SN-RN <= window) {

* IF Window is full
* Go-back-N *

else {
SN=N=;
job = newjob(top-job->time,"send",0,0.0);
placejob(job);
}

} /* Packet transmission complete */

Figure B.2: Go-back-N implementation.
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*Time to Recieve a Packet *

if (!(strcmp(top-.job->type,"recv"))){
seed=seed* 11035 15245+ 12345;
rand=(seed/65536) % 32768;

* ACK the received Packet *

if (rand/32767 < pow((1.0-BER),top..job->length)){
successful-bits=successful..bits+top-job->length-overhead;
if (SN == 1) SN=O;

else SN=1;

tr=((length+ack-length) /capacity)+propogation;
job = newjob(top-.job->time+tr,"recv",SN,length);
place-job(job);
I

temp=top-job->following;
free(top-job);
top-jobtemp;
I /* repeat for next job *

Figure B.3: Stop-and-wait simulation block does not require a "Time to Transmit
a Packet" section.
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